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Abstract--We consider descriptors of gas-particle aggregates which represent space-averaged local 
properties of the aggregate. We show that such descriptors have undulations due to the finite size of the 
averaging volume, and derive an estimate for the bounds of the amplitude of the undulations. According 
to that estimate, one obtains reasonably accurate averages only if the averaging volume contains at least 
60-150 particles. In terms of the size of the averaging volume, this limitation means that the diameter 
of the volume should equal at least 4-5 mean distances between particle centers. A consequence for the 
modeling of two-phase flows through tubes is that space-averaged descriptors cannot resolve the radical 
structure of such flows unless the mean particle distance is much smaller than one-tenth of the tube 
diameter. This condition excludes, for instance, the use of average descriptors for radial flow resolution 
of some interior ballistics flows, where the particulate phase consists of propellant grains. 

1. INTRODUCTION 

This paper deals with two-phase flows which consist of a gas-particle mixture. Such flows are 
described commonly by averages of the local properties of the gas and particles (Drew 1971; Gough 
1974; Delhaye & Achard 1977; Nigmatulin 1979; Immich 1980; Gibeling et al. 1980; Celmi0~ & 
Schmitt 1984; Dobran 1984). The flow descriptors can be averaged in various ways, e.g. over a 
time domain, over a spatial dimension etc. Comparing the different averaging methods, one finds 
that most useful in terms of general properties and applicability to unsteady flows, is volume 
averaging (Dobran 1984; Celmi0~ & Schmitt 1984). Conceptually, volume averaging might be 
interpreted as a view of the flow field with the aid of a probe which is the averaging volume V. 
It is obvious that using probes with different geometries one obtains different descriptions of the 
same physical flow field. This dependence on V is also manifested in the governing equations for 
the averaged flow descriptors. The equations consist of a system of partial differential equations 
with appropriate initial and boundary conditions, and a closure of the system by a set of 
constitutive equations. These equations, notably the initial and boundary conditions and the 
constitutive equations, are shown easily to depend on V (Celmi0g & Schmitt 1984; Dobran 1984). 
As a consequence, the solution of the governing equations also depends on the size and shape of 
V, which is in agreement with the intuitive interpretation of V as a probe of the flow field. A 
reasonable discussion of a two-phase flow field in terms of space-averaged quantities, therefore, 
requires a specification of the averaging volume for which the results are assumed to hold. Most 
authors avoid the specification of V by assuming tacitly or explicitly that the scale of V is much 
smaller than the scales of salient flow structures and much larger than an average distance between 
particles. Explicit statements of this condition on V are given, for example, by Drew (1971), Gough 
(1974), Immich (1980) and Celmi0g & Schmitt (1984). If the scale of V is within this range then 
one can expect little dependence of the averaged flow field on V. However, there are flows of 
practical interest for which an averaging volume with the quoted properties does not exist. One 
example is a boundary layer flow with particles which have diameters that are not much smaller 
than the boundary layer thickness. Another example is a flow through a tube where the tube 
diameter is not orders of magnitude larger than an average distance between particles. In order 
to describe salient flow features in these examples, the averaging volume must be chosen so small 
that it is not much larger than an average distance between particles. In this regime, one can expect 
a strong dependence of the averaged flow (and its governing equations) on the size and shape of 
V and, therefore, a discussion of average flow equations and their solution is meaningless if V is 
not specified. The above-mentioned examples and similar flows should be analyzed in terms of 
quantities other than volume-averaged descriptors. 
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The purpose of  the present paper is to find a quantitative bound for the validity of  the usual 
volume-averaged flow equations and flow descriptors. The problem is approached by considering 
the possibly simplest two-phase medium: a flow with uniform particle distribution, sampled with 
V at places sufficiently remote from flow boundaries. If  V is large, then one obtains for the gas 
volume ratio • with V practically the same value for any position of  V. This value of ct is close 
to the limit value 0~ for infinitely large V in an unrestricted medium. Hence, using a large V, one 
can reasonably describe the mixture by a single constant 0L If, on the other hand, V is very small, 
e.g. smaller than the particles, then the averaged flow is not uniform at all: at the location of  a 
particle the gas volume ratio 0t drops to zero, and between particles the value of • is close to unity 
(Such a detailed description of a two-phase flow should not be analyzed in terms of space-averaged 
two-phase equations.) These examples show that the degree of  apparent uniformity of  the particle 
distribution depends on the size of  the probe V. Hence, one can ask for a lower bound of  V above 
which a given particle distribution appears to be reasonably uniform. The bound depends on the 
particle sizes, the average distance between particles and on the meaning of  "reasonably uniform". 
The latter concept we quantitate by a tolerance level for the difference between the actual ct for 
a finite V and the limit value a for infinitely large V. One can show that the amplitudes of the 
deviations of other flow descriptors (such as average velocity, density etc.) from their corresponding 
limit values are proportional to the difference I ~ -  ~1 (Celmi~ 1984). Therefore, a tolerance 
expressed in terms of the deviations ~ -  0~ will in most cases provide an adequate order of  
magnitude bound for the size of V. 

We note in passing that the averaging volume should not be confused with the so-called control 
volume which is used in the derivation of conservation equations. The latter can be reduced to 
infinitesimal size, for instance, in order to obtain conservation equations in differential form. In 
contrast, the averaging volume is finite and fixed (at least within finite limits) for any given flow 
description. It cannot be freely changed without changing the governing equations, particularly the 
constitutive equations. In particular, it cannot be reduced to zero, because the concept of averaging 
always implies a finite averaging volume, much larger than the particles in the flow. 

The calculation of extreme undulations of the gas volume fraction ~t in a uniform gas-particle 
mixture is described in section 2. Sample calculations with different uniform particle distributions 
and different sizes of  V can be used to obtain an empirical relation between the size of V and the 
amplitudes of undulations of  0t. The derivation of  such a relation is outlined in section 3. Section 
4 contains a discussion of  the results and section 5 is a summary. 

2. U N D U L A T I O N S  OF ~ IN U N I F O R M  P A R T I C L E  A G G R E G A T E S  

Let the averaging volume V be a sphere with radius R, the particles be spheres with radii s and 
let the particle aggregate consist of  m particles and occupy the volume W. Then the average gas 
volume fraction of the two-phase medium contained in W is 

4 7rs2m 
= 1 . . . .  [1] 

3 W 

One obtains a measure for the mean distance between particle centers by assigning to each particle 
the volume fraction W/m and representing this volume fraction as a virtual sphere. The diameter 
L m of the virtual sphere is given by the formula 

t m = 2s(1 - 0~) -1/3, [2] 

and it may be defined as the mean distance between particle centers. If the diameter of  the averaging 
sphere V is much larger the Lm, then a good estimate for the number of particles contained in V 
is, in terms of Lm, given by 

= (2R'~ 3 , [31 
n \Lm, ] 

and the gas volume fraction ct within V is very close to 0~ for any position X of  the center of V. 
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For arbitrary V, the dependence of 0t on the position and size of V can be expressed by a function 
of the following type: 

0t = f (L~ ,  ~--~m, ~). [4] 

The particular form of f depends on dimensionless parameters which describe the geometry of the 
particle arrangement. For a given aggregate and averaging sphere, ~ and R/Lm are constants, and 

depends only on the position vector of the averaging sphere, i.e. on the first argument in [4]. As 
V is moved along a trajectory through the aggregate, • undulates about its limit value ~. Our goal 
is to obtain estimates for the bounds of the amplitudes of these unwanted undulations for arbitrary 
trajectories of V through aggregates with uniform particle distributions. 

The particle aggregates should be chosen for the present purpose such that one reasonably would 
qualify them as representing uniform distributions without specifying the size of the averaging 
volume. (As pointed out above, any aggregate can be considered as uniform if V is sufficiently 
large.) This means that the aggregate should not have obvious particle clusters, periodic or random. 
It seems that the best examples of such aggregates are lattice points in regular lattices. Four 
examples of such lattices are defined in the appendix, and more examples can be easily constructed. 
The simplest example in the appendix is the square cyclinder lattice (cubic lattice). It represents 
an aggregate with a very low sphere packing density. The next example is a triangular cylinder 
lattice with an intermediate sphere packing density, and the two remaining examples (leap-frog 
square and leap-frog triangular lattices) are both lattices with the highest possible sphere packing 
densities. The orientations and lateral positions of the lattices are arbitrary. All four lattices clearly 
represent aggregates with uniform particle distributions in the outlined sense. 

We have not calculated the undulations of • in any example of a "uniform and random" particle 
distribution because the concepts of spatial uniformity and spatial randomness are contradictory. 
A randomness in the spatial distribution implies (random) clusters of particle arrangements, i.e. 
deviations from uniformity. Therefore, for a given ~ the undulations of ~ in a "random" particle 
aggregate necessarily are larger than in a "uniform" aggregate in the form of a regular lattice. 

The calculation of ~t in terms of the arguments in [4] is most easily arranged for fixed positions 
X of V, and a variable radius R of V. Figure 1 shows two examples of such a calculation, 
corresponding to two positions of the averaging sphere in a square cylinder lattice array of particles 
with ~ = 0.9. One position of the averaging sphere is the point of origin which is a lattice point 
and occupied by a particle. At that point, ~ = 0 for R ~< s, and ~t starts to increase only as R 
becomes larger than s. The other curve in figure 1 is for the position X/Lm = (0.4, 0.2, 0.0), which 
is a point occupied by gas. The corresponding curve ~(R/Lm) starts at R = 0, and decreases only 
as the expanding sphere encounters the first particle. As R further increases, both curves undulate 
with decreasing amplitude about the limit value ~ = 0.9. The differences in amplitude and 
wavelength of the undulations between the two examples indicate the dependence of ~t on the 
position vector X / L  m. The two sample curves belong to a family of curves with three parameters, 
namely the three components of X/L m. We are interested in the extreme deviations of ct from 
for arbitrary positions of the averaging sphere, i.e. for arbitrary positions and orientations of the 
lattice with respect to a fixed sphere. These extremes can be obtained by calculating the envelopes 
of the three-parameter curve family. The result is shown in figure 2. The irregular shape of the 
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Figure 2. Envelopes of gas volume fraction curves: square cylinder lattice, ~ = 0.9. 

envelopes is somewhat unexpected, considering the regularity of  the particle aggregate. Such an 
irregularity of the envelopes was found to be typical for all four lattices. Examples of individual 
curves and envelopes for a leap-frog triangular lattice with a = 0.5 are shown in figures 3 and 4, 
respectively. Further examples were given previously (Celmi0g 1984). In all calculated cases (with 
various values of  ~ and for the four lattices considered) one finds that the extreme deviations of 
the envelopes from ~ are aproximately proportional to a negative power of R/Lm, and that the 
wavelength of the undulations of ct - ~ is of  the order L m . These trends are investigated in more 
detail in the next section. 

3. U N D U L A T I O N  B O U N D S  A N D  T O L E R A N C E  C O N D I T I O N S  FOR R / L  m 

One obtains an overview about the trends of  the deviations A~ = ct - a by plotting the extreme 
values of  the envelopes o f  ~ (R /Z  m ) vs the nondimensionalized radius R/Lm of  the averaging sphere. 
Figure 5 shows such a plot for ~ = 0.5. The different symbols in the plot signify different lattices 
and positive or negative deviations. The scatter of  the points indicate that none of  the four lattices 
consistently produces larger or smaller deviations, and that the extreme positive and negative 
deviations are of  the same order of  magnitude. The straight line in figure 5 represents an estimated 
upper bound for the deviations. By comparing such plots for different values o f  a one finds the 
following empirical equation for the upper bound: 

IAal - -  0.5~2(1 - ~ )  . [5] 

Now we discuss the validity of this equation. 
The bound estimate [5] is based on calculations within the range 1.0 ~< R/Lm <<. 4.0 for ~ = 0.5, 

0.667 and 0.9, and for the four lattices described in the appendix. Because the lattices have quite 
different symmetries and, because they represent aggregates with maximal packing densities ranging 
from Emi. = 0.260 to 0.476, one can assume that the results are valid for all reasonably uniform 
particle arrangements. The bound [5] cannot be improved in the sense that calculations of 
additional examples of uniform aggregates might only make the bound larger but we consider this 
to be unlikely. The limitation of  the calculations to a ~> 0.5 was motivated by the observation that 
the lowest possible value of ~ for the square cylinder lattice is 0.476. Therefore, one can obtain 
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Figure 3. Gas volume fraction dependence on averaging 
sphere radius: leap-frog triangular lattice, ~ = 0.5. 
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Figure 5. Extreme deviations of gas volume fraction. Combined plot for four lattices, and positive and 
negative deviations, ~ = 0.5. 

an ~<<0.5 only in special dense packings of  spheres, whereas 0~ >/0.5 can be realized with any 
reasonably uniform particle aggregate. The upper limit of  a is unity (gas only). Formula [5] 
produces for this limit the correct value A0~ = 0. Therefore, one can expect that it also adequately 
interpolates between 0~ = 1.0 and the calculated value for ~ = 0.9, so that it is a reasonable estimate 
of the bound for the whole range 0.5 ~< 0~ ~< 1.0. The calculations were limited to R/Lm >i 1, because 
for smaller R / L  m the maximum amplitudes of  the undulations become excessively large. At 
R / L  m = 4.0, the amplitudes are of  the order 10 -3 which can be assumed sufficiently small for most 
applications. 

Equation [5] may be solved for R / L  m and used as a condition for the minimum size of  the 
averaging volume in terms of  a prescribed tolerable deviation I A0~ Itol- Then the equation produces 
the following condition: 

R _[-0.5(1 - ~)71/2 
> J • [ 6 ]  

If R/Lm satisfies this condition 0L then the undulations of  ~ are less than IAa hol. 
One may choose a constant value for I Aa Itol if 0~ is known to be less than unity throughout the 

flow. However, if 0~ is approaching unity in some parts of the flow, then a more reasonable 
expression for I A0~ Ito~ is a function proportional to 1 -- 0L For  instance, one may define the tolerance 
level as follows: 

f I Aa  I, if ~ ~< ~, 

[Ao~ 6oi -- l l - -a  [Ao~l,--~ if ~ t<~ ,  

with proper values of  [A0~]t and 0t,. The corresponding form of [6] is 

/ 1 \I/2 
R 0~t}] ~ ) , - -  > a[max{1 - 0L 1 -- - I/2 _ _  
Zm 21Aal, 

[7] 

[8] 
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We assume for simplicity that ~, > 0.85 and I A~ I, < 0.15, and observe that under these restrictions 
the factor of IA~ I~/2 in [8] has a maximum at ~ = 2/3, a minimum at ~ = ~, and is linearly increasing 
with ~ between a = ~, and a = 1. Hence, if ~ is not known, then [8] should be used with ~ = 2/3, 
because this gives the largest value of  the r.h.s. If ~ is known, for instance, to be larger than ~,, 
then [8] should be used with 07 = 1. 

Figure 6 is a graphical display of  [8] for co, = 0.9. It shows, for instance, that for IAc~ F, = 0.01 
the averaging sphere's radius R should be larger than 2.7Lm, if ~ is not known, and larger than 
2.2Lm if ~ is known to be larger than 0.867. The solid lines in the figure indicate the domain in 
which sample calculations have been done. Extrapolations are indicated by dashed lines. 

Relations [6] or [8] can also be expressed in ter/ns'6f'the minimum required number of  particles 
in the averaging sphere. Using [3] and [8] one obtains for the number n the following condition: 

/ 1 \3/2 
n > ~ 3 [ m a x { l - - ~ , l - - o ~ t } ] 3 / z ~ )  • [91 

Condition [9] is displayed in figure 7 for ~ = 0.9. It shows that for IAc/I, = 0.01 the minimum 
number of particles in the averaging sphere is between 65 and 160, depending on a. The condition 
has been tested by calculations with n between 8 and 512, as indicated by the solid parts of  the 
lines in the figure. 
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4. DISCUSSION OF THE RESULT 

In the preceding section, a relation was derived between the extreme amplitudes of undulations 
of a in a medium with uniform particle distribution, and a lower bound for the radius R of the 
averaging volume V. The important result is that the bound for R is finite and typically equals 2 
or more mean distances between particle centers. 

Let ~ be another flow descriptor, e.g. the gas velocity. If 4 is constant then its average is also 
constant and equals 4, regardless of the size of V. Undulations of a do not affect this average. 
However, if 4 is not constant, then its average undulates with an amplitude which is proportional 
to the amplitude I A0~l of the undulations of ~ (Celmi0g 1984). For instance, if 4 has a constant 
gradient and changes by 64 along a diameter of V in the gradient direction, then the amplitude 
[A4[ of the undulations of the average 4 is given by 

164 II A~ I 
IA41~ 3e [10] 

(An example of a transient two-phase flow with constant gradient is the flow in a gun. At any fixed 
time, the gas and particle velocities have a constant gradient practically over the whole length of 
the tube between the breech and projectile.) Another example of an undulating flow descriptor is 
a 4 which equals a constant value 40 throughout the gas except for boundary regions around each 
particle. Let ]d4[ be the magnitude of the difference between the average 4 and 40- Then the 
undulations of the average 4 have an amplitude A4 which can be estimated by 

I d 4  II A~ I 
I a 4 1  ~ [~(1 - ~)]" [11] 

Estimates [10] and [11] may be used in combination with the formulas for the bound of R in section 
3 to obtain a specific value for the lower bound in applications where a particular descriptor 4 
is of principal interest. 

The existence of a finite lower bound of the averaging sphere's radius has consequences for the 
representation and computation of two-phase flows. Let Rmi n be the value of the bound, i.e. we 
assume that the flow field is described using quantities which are averaged over a V with a radius 
R ~ Rmi n . Then any flow structures with extensions less than P~in will be reduced in amplitude and 
stretched out to a size of 2Rmi n or larger. Consequently, a complete structure and accurate 
representation of the field can be made on a computing mesh with mesh size RmJ2. Any mesh 
with mesh refinement can be done by interpolation in such a net, and a finer net does not provide 
a more accurate description of the flow. The same applies to flow measurements and flow 
calculations. Local flow measurements should be averaged over V and presented in the described 
coarse mesh. Calculations of the flow field, e.g. by numerically solving the governing equations, 
should be performed with a mesh size of the order RmJ2 so that flow structures with extensions 
larger than, say, Rmi n can be captured. Any refinement of the computing mesh below Rm~,/2 has 
the effect of interpolation. If flow structures extending less than Rm~ appear in the solution (using 
a fine mesh or an analytical solution) then they should be interpreted as numerical artifacts or noise, 
because they cannot be interpreted as average flow properties. A likely cause of such structures 
is the failure to use constitutive equations and boundary conditions appropriate for the size and 
shape of the averaging volume. 

When averaged descriptors are used to represent transient flows in which ct approaches unity in 
some parts of the flow field, then one should distinguish between the possible causes for 
approaching unity. If the reason for the disappearance of the particles is the reduction of their sizes 
(for instance, by combustion), then Z m does not change and consequently Rmi n is not affected. 
Therefore, such regions with a ,~ 1 can be represented by the same average descriptors as the rest 
of the field. If, however, a approaches unity because particles diffuse from the mixed-phase region, 
then Lm increases. Consequently, R~i n also increases, i.e. such a flow field has to be averaged with 
a larger V to guarantee the tolerance level of the undulations of ~ or a decrease of the accuracy 
of the representation must be taken into account. A better approach in the case of diffusing particles 
is to model the rarified parts of the aggregate by some other method than averaging, for instance, 
by individually tracing the diffused particles. 
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As an example, we consider an interior ballistics two-phase flow where the particulate phase 
consists of propellant grains. Let the chamber volume be W c and the volume of  the barrel be W B. 
At the time when the projectile exists the barrel, the volume available to the gas-particle mixture 
is W c + WB. Let the number of  grains be m. Then the mean distance between particle centers at 
the beginning of  the firing cycle is equal to 

At muzzle time, the mean distance equals 

= . [ 1 3 ]  
m 

Hence, the mean distance increases during the firing cycle by the factor 

( L m =  l + ~ c  c . [14] 
Lmo 

Let the initial gas volume fraction in the gun be ~ ,  and the initial particle radius be so. Then 

Lm0 = 2s0(l - 0t0) -I/3 

,/ WB']'/~ 
Lm = 2~o(1 - ~o)-'/~/1 + 

\ 

and 

[15] 

Typical for interior ballistics is an ct 0 between 0.4 and 0.6, and W B / W  c ~, 10. Therefore, the 
maximum of Lm/(2So) is, for a typical gun, between 2.64 and 3.02. From figure 1 one finds the 
condition R t> 2.7Lm for last Itol = 0.01. Hence, in order to represent the entire transient firing cycle 
by averaged descriptors, one has to use an averaging sphere with a radius of  about 8 initial particle 
diameters. For most guns, the diameter of  such an averaging sphere is of  the same order as the 
caliber of  the tube. This means that in typical gun the radial flow structure cannot be represented 
and discussed in terms of  space-averaged descriptors. Space averaging in such cases is only 
meaningful if it is done over cross-sectional segments of  the tube, i.e.for the calculation of  the core 
flow. 

5. SUMMARY AND C O N C L U S I O N S  

The description of two-phase flow in terms of  space averages always implies a finite averaging 
volume. The size of the volume affects the flow description. This becomes evident by considering 
extreme volume sizes. If  the averaging volume is very large, then all flow structures are smoothed 
out and one obtains a flow with constant properties. If the volume is very small, then each particle 
is visible in the averages and at the limit one has the local flow description. Hence there are upper 
and lower bounds for a reasonable size of the averaging volume. The bounds depend on the 
problem which one wants to investigate, and one hopes that the lower bound does not exceed the 
upper bound, so that an appropriate averaging volume can be identified. However, there are 
examples of important two-phase flows for which such a volume cannot be identified and which, 
therefore, cannot be analyzed in terms of  volume-averaged descriptors. 

An upper bound for the averaging volume is given simply by the dimensions of flow structures 
which one wants to investigate. The dimensions of the averaging volume should be sufficiently small 
so that the salient flow structures are not smoothed out. 

A lower bound is more difficult to specify. The present paper provides an empirical formula for 
this specification which gives the bound in terms of  tolerable undulations of the gas volume ratio 
in particle aggregates with uniform distribution. One finds that this bound is quite large. For  
instance, in terms of  particle numbers, a reasonable averaging volume should contain at least 
60-150 particles. Because of  this finite lower bound, one should be careful when discussing details 
of flow structures, like boundary layers or radial profiles of  tube flows. Such discussions are only 
meaningful if one can specify the averaging volume, or the range of volumes, for which the results 
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hold. One can show, for instance, that for two-phase flows through tubes the radial profiles of 
average descriptors are only meaningful if the distances between particles are at least an order of 
magnitude smaller than the tube radius. Similar restriction hold for boundary layer flows. 

The results of the present paper permit one to determine explicitly, for given particle sizes and 
distributions, what kind of flow structures can be reasonably discussed in terms of space-averaged 
descriptors. 
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A P P E N D I X  

Lattices 
We describe in this appendix the four lattices which were used to define particle positions for 

calculation of the gas volume fractions. 

1. Square cylinder lattice 

We construct the lattice by first arranging the particles in a square mesh with the mesh constant 
L in the x, y-plane, and then translating the mesh by multiples of L in the z-direction. Each square 
thereby generates a square cylinder. In this lattice, each particle has 6 neighbors at the distance L. 

2. Triangular cylinder lattice 

The lattice is constructed by first arranging the particles in the x, y-plane in an equilateral triangle 
mesh with the mesh constant L, and then translating the mesh in the z-direction by multiples of 
L. Each triangle thereby generates a triangular cylinder. The number of neighbor particles at 
distance L for this lattice is 8. 

3. Leap-frog square lattice. 

This lattice is constructed by starting with a square mesh in the x, y-plane, with the lattice 
constant L and the sides of the squares parallel to the axes. Then, the mesh is translated by multiples 
of L/x/~  in the z-direction and by multiples of L/2 in the x- and y-directions. Thus, the pattern 
is translated in a leap-frog manner from one z-plane to the next. Each particle in this lattice has 
12 neighbor particles at distance L. 
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4. Leap-frog triangular lattice 

The lattice is constructed by first arranging the particles in an equilateral triangular mesh in the 
x, y-plane, with the mesh constant L and one side of the triangle parallel to the x-axis. Then the 
mesh is translated in the z-direction by multiples of L x / ~ ,  and in the y-direction alternatively 
by _ LV/3. Thus, the triangular mesh is shifted in a leap-frog manner from one z-plane to the next. 
The number of neighbors at distance L from any particle in this lattice is 12. 

Gas Volume Fraction 

The minimum value of the gas volume fraction (closest packing of spheres) is obtained in the 
four lattices by setting the particle radius s = L/2. The numerical values of #-min are as follows: 

Square cylinder 

Triangular cylinder 

~n~i, = 1 -- 6 = 0.476. 

7Z 

tZmi n = 1 3 ~  - 0.395. 

1[ 
Leap-frog lattices ~min = 1 3x/~ = 0.260. 

Both leap-frog lattices are arrangements with closest packing of spheres in three-dimensions. 


